

PRS: Physics Reconstruction and Selection HCAL/JetsMET group

Status of JetsMET

Shuichi Kunori U. of Maryland 06-June-2001

Scope of the PRS project

- The PRS groups will work on (and will also have responsibility for) the following tasks:
 - Detector simulation
 - Detector reconstruction
 - Detector calibration
 - Monitoring
 - Physics object reconstruction and selection (HLT)
 - Test beam analysis
- CoreSW/Comp will carry all other (offline) software not included above.
- Ditto for Trigger/DAQ (but scope of overlap is online farm and framework)

P. Sphicas/CERN-MIT CPT Project Organization CMS Steering Committee meeting Nov 20, 2000

First CPT week was in April, 2001.

4 groups

- JetMET
- egamma
- muon
- b/tau

HCAL - Jets/MET

S.Eno / S.Kunori - Coordinator

http://home.fnal.gov/~sceno/jpg/Default.htm

Dates:

End 2002 DAQ TDR (end 2001 for HLT section) End 2004 Physics TDR

Organization:

HCAL simulation – Sunanda Banerjee (TIRF)

CMSIM/GEANT4/FAST

Verify shower model in G4.

Calibration & Monitoring – Olga Kodolova (MSU)

energy scale of jets, MET, tau

-> from detector construction/commission to in-situ calibration.

HCAL in ORCA – Salavat Abdoullin (Maryland)

readout simulation + ...

Physics objects with HCAL – Sasha Niketenko (CERN/ITEP)

jets, MET & tau

DAQ TDR

(P.Sphicas, Nov.20, 2000)

- Currently, the DAQ TDR has one chapter dedicated to the High Level Trigger
 - It should describe:
 - Amount of data per detector (occupancies, etc)
 - Readout scheme (zero-suppression, selective readout etc)
 - Basic raw data format (time samples)
 - Basic reconstruction
 - Lvl-2 algorithms
 - Lvl-3 algorithms
 - Performance of all object identification
 - Basic trigger table that includes all discovery channels
 - Basic rate plots. We MUST have a credible scenario to get to the O(100) Hz level

For both low and high luminosity

A lot of work needed!

Main Issues

Many physics analyses require

- low E_T jets:

from top, W, Higgs from WW fusion

part of signal background rejection (e.g. jet veto)

- High luminosity

pile-up energy low ET jets from overlapping events fake jets due to pileup.

- τ jet
- b jet (tag)
- Correct energy scale from low E_T to very high E_T
- Better resolution for Jet/MET

E_T range 20GeV-2TeV

Single Top - Kinematics

Measurement of

- V_{tb} / top decay properties / background to new physics

Forward tagging jets & Higgs Couplings measurement

D.Zeppenfeld, R.Kinnunen, A.Nikitenko, E.Richter-Was, Phys.Rev., D62(2000) pp13009

Accuracy expected with 200 fb⁻¹of data with ATLAS+CMS detectors at LHC

- □ measure Hγγ, Hττ, Hgg couplings at 10 % level
- □ hWW coupling ($|\sin(\beta-\alpha)|$) can be measured at 5% level

Although $\sigma(VBF)\sim\sigma(GF)/3$, VBF process may play a big role in measurement of higgs properties in addition to discovery potential.

τjet

τ jets

tau jet:

narrow (one prong) jet

L1/L2:

use only calorimeter

L1: 0.087x0.087

L2: individual crystal

L2.0 Tau trigger

- 1. reconstruct a Jet*
- 2. calculate e.m. isolation:

$$P_{isol} = E_t^{ecal}(R < 0.4) - E_t^{ecal}(R < 0.13)$$

3. accept event if P_{isol} < P_{cut}

gg->bbA, A-> 2τ -> h^+ + h^- + X

tau jets at L3

Jet direction given by L2.0 Tau object

- 1. Tracks are reconstructed with 3 pixel layers only within a cone given by L2.0 jet axis.
- 2. Isolation cuts: tracks in a big cone (0.3-0.4) vs. a small cone (~0,1), PT(tr)>1-2GeV

(Nikitenko & Kotlinski : cms116 analysis)

Pion Response: Linearity

ECAHL+HCAL: Non compensating calorimeter

96'H2 Teast Beam Data

CMS Simulation

ET=3 GeV pion in $0<|\eta|<5$

Jet Response and Correction #1

(S.Arcelli)

Et-eta dependent correction for QCD jets

No pileup

 $Et(corr)=a + b \times E_T(rec) + c \times E_T(rec)^2$

With pileup

Dijet Mass Resolution

No pileup

With pileup

W(jj) Top(jjj)

M(bb) in ttH

Before correction

Jet energy correction

without: 19%

with: 14%

CMSJET 15%

After correction

(S.Arcelli & V.Drollinger)

MET

Out of cone corr. uses weights for jet(30GeV) corr.

Corrections

Type 1: Jet corr.

Type 2: Jet corr. + out of cone corr.

Corrected MET for mSUGURA Jets+MET at low lumi

Higgs mass in bbA, $A \rightarrow 2\tau \rightarrow 2j$

(A.Nikitenko)

before correction

after correction

bbA, A->2τ->2j	no corrections	type1 corrections	type2 corrections	CMSJET
<m<sub>H></m<sub>	438.3 GeV	500.3 GeV	511.0 GeV	500.0 GeV
σ/ <m<sub>H></m<sub>	19.7 %	18.9 %	16.8 %	13.4 %
$\epsilon_{ m reco}$ (corr.) / (no corr)	1	1.53	1.80	

Jet correction method #2

Jet Corr. #1

$$\alpha$$
 x (EC+HC)

- corr. for jet energy scale
- α depends on jet(Et, η)

Jet Corr. #2

$$\alpha$$
 x EC + β x H1 + γ x H2

- optimize jet resolution (and jet energy scale)
- α , β , γ depends on jet(Et, η)

Optimized weights by #2 $0.0 < \eta < 0.4$

(A.Oulianov)

Jet Correction method #2

Table 1: Optimum weights and energy resolutions for ET=80 GeV jets

eta range	eb	hb1	hb2	ee	he1	he2	RESOLUTION CMSIM120 weights + energy corrections	RESOLUTION optimum weights
0.0 - 0.4	1.48	1.12	1.12				0.143	0.136
0.4 - 0.8	1.49	0.95	1.19				0.141	0.134
0.8 - 1.1	1.49	1.08	1.19				0.144	0.137
1.25-1.45	1.47	0.98	1.40	1.89	1.26	1.54	0.136	0.133
1.7 - 2.0				1.44	1.04	1.15	0.134	0.128
2.0 - 2.4				1.32	1.03	1.15	0.123	0.120

Table 3: Optimum weights and energy resolutions for ET=120 GeV jets

eta range	eb	hb1	hb2	ee	he1	he2	RESOLUTION CMSIM120 weights + energy corrections	RESOLUTION optimum weights
0.0 - 0.4	1.40	0.93	1.16				0.124	0.119
0.4 - 0.8	1.41	1.13	1.13				0.132	0.126
0.8 - 1.1	1.40	1.16	1.16				0.125	0.121
1.25-1.45	1.44	0.82	1.37	1.85	0.55	1.73	0.125	0.119
1.7 - 2.0				1.37	0.91	1.14	0.122	0.116
2.0 - 2.4				1.29	0.70	1.17	0.117	0.113

Correction method #3a (single pion)

(V.Genchev)

Method #3

$$E_{nl}^{rec} = \sum_{i=1,4} f_i(\vec{A}, E_i) E_i,$$
 i : longitudinal segmenation

Method #1

$$E^{rec} = \sum_{i=1,4} C_i E_i,$$

Minimize $\boxed{\chi^2=1/(M-N+1)\sum_{j=1,M}W_j(E_j^{in}-E_{nl,j}^{rec})^2,} \text{ with cmsim.}$

Linearity is restored to 3% in 10-1000GeV for single pion!

Correction Method #3b (single pion)

(D.Green)

$$E = 1/e_E (e/\pi)_E R_E + 1/e_H (e/\pi)_H R_H$$

$$F_o = E_e / E \sim 0.11[\ln(E)]$$

 $e/\pi = e/h/[1+(e/h-1)F_o]$

$$(e/h)_{HCAL} \sim 1.39$$
 (NIM paper)

To find e/h for ECAL, measure e/pi at different energies for showers where there is a substantial energy (> 30% of the beam energy) in ECAL.

$$(e/h)_{ECAL} \sim 1.60$$

Linearity is restored to a few %. The resolution is Gaussian to a high level of accuracy with ~ NO constant term and a 120% stochastic coefficient

Next: identify em cluster and had cluster in jet using transverse shower shape (in crystals) and reco-ed tracks and apply this to had cluster.

Correction Method #3b-j (single pion)

(J.Freeman)

$$E = 1/e_E (e/\pi)_E R_E + 1/e_H (e/\pi)_H R_H$$

$$F_o = E_e / E \sim 0.1 \, \text{l}[\ln(E)]$$

 $e / \pi = e / h / [1 + (e / h - 1) F_o]$

$$(e/h)_{HCAL} \sim 1.39$$
 (NIM paper)

To find e/h for ECAL, measure e/pi at different energies for showers where there is a substantial energy (> 30% of the beam energy) in ECAL.

$$(e/h)_{ECAL} \sim 1.60$$

Same as #3b, except(R1)

 $R_E=4*(L0/HC)*(EC+HC)$

with constraint: RE<(EC+HC)

(average)

 $R_E=0.4*(EC+HC)$

ECAL fraction vs. L0

Week correlation

Red line for

ECAL fraction=4.0*L0/(HC)

ECAL fraction

< EC/(EC+HC) > = 0.3911

Correction #3b single pion response

resolution

linearlity

Correction #3b "jet" = pion + 100GeV γ

Resolution

Linearity

How about real jets?

5((Eriet-Erparton)/Eriet), %

30

25 20

15

Effect of Threshold on low E_T jet and MET

(I.Vardanian)

Lower threshold is better!

1.0

(S.Nikitenko)

1.5 2 2.5 3 3.5 4

tower E, threshold, GeV

 $=10^{34} \text{cm}^{-2} \text{s}^{-1}, \Delta \varphi_{ej} < 165^{\circ}$

■ L= 10^{33} cm⁻²s⁻¹, $\Delta \varphi_{\bullet}$ < 175°

Electronics noise and occupancy define the threshold. >> aim at 0.5GeV/tower @ 10E34

Threshold on ECAL and HCAL transverse cell energy (GeV)

Front end electronics simulation

 $E = \Sigma$ (Signal buckets), $-\Sigma$ (pre buckets), n

Electronics noise 200MeV/25nsec/ch → 500MeV/(3+3) buckets/ch

→Looking for better method for energy calculation & bunch crossing ID.

Algorithm for L1 through Offline (1)

L1 – calorimeter only (coarse segmentation)

- Resolution improvement
 - Equalize calorimeter response with simple correction
 - a x (EC+HC), a depends on jet(ET,h)
 - a x EC + b x HC, a,b depends on jet(ET,h)
- Fake Jets/Pileup jets rejection
 - Threshold cut on a central tower in jets (seed cut)

L2 – calorimeter only (fine segmentation)

- Resolution improvement
 - Better energy extraction from ADC counts
 - Em/had cluster separation using transverse shower shape in crystals
- Fake jet/Pileup jet rejection
 - Use of transverse shower shape

Algorithm for L1 through Offline (2)

L3 – calorimeter plus pixel

- Resolution improvement
 - Pileup energy subtraction
 - Estimation of energy flow from pileup events using pixel hits/tracks.
- Fake jets/Pileup jets rejection
 - Vertex information and jet pointing using pixel hits/tracks.

Offline – calorimeter plus fully reco-ed tracks

- Resolution improvement
- Fake jets/Pileup jets rejection
 - → Jet and MET will be reconstructed with Tracks, EM clusters and HAD clusters.
 - → All tracks down to E_T~ 700MeV have to be reconstructed at 10E34!
- Physics correction e.g. correction for IFR/FSR.
 - → In-situ calibration!

Use of tracks CDF and LEP use tracks to improve jets

Improvement of jet energy resolution with tracks

The work initiated by Dan Green in CMS and continued by Irina Vardanian.

Long way to go, but promising...

Software (1)

Simulation

- CMSIM
 - 120 mainly used (2000 fall production)
 - Default GHEISHA
 - 121 for muon (new 3D field map)
 - Default GCALOR
 - 122 updated tracker (just released)
 - HF updated (?) V.Kolosov
- OSCAR (GEANT4)
 - Geometry
 - Almost there Sunanda Banerjee
 - Interface to ORCA (hits)
 - almost there ???
 - Validation of physics in G4
 - '96 test beam Sudeshna Banerjee
- Validation from CMSIM/OSCAR to ORCA
 - Just started Shashi Dugad

Software (2)

Reconstruction

- Readout simulation (S.Abdullin)
 - Update/study in progress
- Jet (H-P.Wellisch)
 - New addition Window algorithm (Irina/Olga)
- MET (P.Hidas)
- Tau (A.Nikitenko)
- Ntuple-maker (P.Hidas)
 - New format coming
- Interface to calibration database (A.Oulianov)
 - Coming...

Analysis software

- PAW
- Inside ORCA
- CAFÉ first trial version this fall (?)

Expanding group

We try to attract more people in the HCAL community and help them to get familiar with the CMS detector, CMS software and physics (analysis) at the LHC.

Assumption:

- geographical spread and diversity in skill level continue.

Strategy:

- lower the threshold for entering software development and data analysis.
- build a core software team for strong support (preferably in US).
- recruit experienced people to coordinate larger number of people.

Potential manpower:

- Universities in US, RDMS (not only ITEP an MSU), India, Turkey, Hungary...
- US CMS Software and Computing Project (Tier1 & CAS)

Action Plan

(as of Feb.2001)

Establish the MC data production center in the US (FNAL) in addition to CERN (and Moscow).

Addition
-UCSD
-Florida

- production crew in addition to computer/software system.

Package a complete set of software (OS, compiler, CERNLIB, CMSIM, LHC++, Objectivity, ORCA, OSCAR, SCRAM) and MC events on a hard disk and/or CD's and distribute.

- "plug-in & play" on a PC or a laptop (Linux). (in addition to network based distribution)

2 gone (Tata,TTU) 3 soon (Kharkov, Panjab, Cukurova) + CD by S.Wynhof

Establish a data analysis environment within C++/OO world.

30GB

- C++/objectivity/ORCA based (in addition to PAW-ntuple based analysis environment.)

Enhance communication/collaboration between offline software group, online control/monitor group and hardware group.

meetings during March CMS week.
 (3/03 on FE, 3/05 On Calibration & Monitoring)

Identify at least two C++/OO experts in each region to help other people in the region.

- CERN (Abdullin, Nikitenko) US (Hidas(?), ?)
- Moscow (Krokhotine, Oulianov, OK)- India (SnBanerjee(?), Mohanty(?))

We need urgently

- Strong software support group
- C++ experts
- Experienced people to guide other people (analysis, experiment)

On going physics analyses (as far as I know)

Higgs (SM/SUSY)

- WH (→bb)
- ttH (→bb)
- qqH ($\rightarrow \tau \tau$, WW, invisible)
- H/A $(\rightarrow \tau \tau)$
- H (→WW, ZZ)
- tbH+ $(\rightarrow \tau V)$

SUSY search

- ???

Standard Model

- tt
- single top
- ???

Heavy ion

- ???

In-situ calibration

- **-** γ**j**
- $-\gamma Z$
- tt
- ???

Need a full list!